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ABSTRACT 

We know that amino acids are combined in sequence to constitute proteins for an undefined 

number of biological functions. Proteins thus evolved for millions of years before being 

repurposed for human applications in the medical field, food and chemicals. CRISPR 

enzymes are emerging as a highly versatile workhorse for targeting of specific DNA 

sequences, useful in biomedicine and biotechnology. Exploring the vast space of possible 

protein sequences is intractable using traditional protein engineering approaches of rational 

design and directed evolution. Data-driven methods can greatly accelerate protein 

engineering strategies and aid in CRISPR enzyme engineering. Data-driven methods also 

leverage the vast and exponentially growing volume of biological data. Here we design an 

experimental and computational pipeline to investigate the binding function of CRISPR-

Cas12a. CRISPR-Cas12a works as a pair of molecular scissors that are programmed using 

an RNA molecule to a site with matching genetic material in DNA. An important limitation 

for human applications is that before they bind to their target DNA site, they must also bind 

to a protospacer adjacent motif (PAM). We design a library of mutant CRISPR-Cas12a 

proteins with chimeric sequences made by DNA recombination. To investigate PAM 

binding function, we develop an assay based on a Green Fluorescent Protein (GFP) reporter 

system presented by collaborators in the Beisel lab. We generate data on the order of 

millions of sequences by using long-read DNA sequencing or nanopore sequencing after 

we performed fluorescence activated cell sorting (FACS) using our assay on our chimeric 

library. Our assay is reproducible, shown by enrichment analysis on chimeric sequences, 

which yielded a consensus protein sequence between three sorting replicates. We further 
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demonstrate machine learning methods to investigate a generalized model for CRISPR-

Cas12a-PAM binding. 
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CHAPTER 1. DATA-DRIVEN PROTEIN ENGINEERING 

Jonathan Greenhalgh1*, Apoorv Saraogee1*, and Philip A. Romero1,2 

1. Department of Chemical and Biological Engineering, University of Wisconsin--Madison 

2. Department of Biochemistry, University of Wisconsin--Madison 

*these authors contributed equally to this work  

 

A version of this chapter is currently in press.  

 

1.1 Introduction 

A protein’s sequence of amino acids encodes its function. This “function” could refer to a 

protein’s natural biological function, or it could also be any other property including 

binding affinity toward a particular ligand, thermodynamic stability, or catalytic activity. 

A detailed understanding of how these functions are encoded would allow us to more 

accurately reconstruct the tree of life and possibly predict future evolutionary events, 

diagnose genetic diseases before they manifest symptoms, and design new proteins with 

useful properties. We know that a protein sequence folds into a three-dimensional structure, 

and this structure positions specific chemical groups to perform a function; however, we’re 

missing the quantitative details of this sequence-structure-function mapping. This mapping 

is extraordinarily complex because it involves thousands of molecular interactions that are 

dynamically coupled across multiple length and time scales. 

Computational methods can be used to model the mapping from sequence to 

structure to function. Tools such as molecular dynamics simulations or Rosetta use atomic 
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representations of protein structures and physics-based energy functions to model 

structures and functions [1–3] . While these models are based on well-founded physical 

principles, they often fail to capture a protein’s overall global behavior and properties. 

There are numerous challenges associated with physics-based models including 

consideration of conformational dynamics, the requirement to make energy function 

approximations for the sake of computational efficiency, and the fact that, for many 

complex properties such as enzyme catalysis, the molecular basis is simply unknown [4] . 

In systems composed of thousands of atoms, the propagation of small errors quickly 

overwhelms any predictive accuracy. Despite tremendous breakthroughs and research 

progress over the last century, we still lack the key details to reliably predict, simulate, and 

design protein function. 

 Machine learning and artificial intelligence are transforming marketing, finance, 

healthcare, security, internet search, transportation, and nearly every aspect of our daily 

lives. These approaches leverage vast amounts of data to find patterns and quickly make 

optimal decisions. In this chapter, we present how these ideas are starting to impact the 

field of protein engineering. Instead of physically modeling the relationships between 

protein sequence, structure, and function, data-driven methods use ideas from statistics and 

machine learning to infer these complex relationships from data. This top-down modeling 

approach implicitly captures the numerous and possibly unknown factors that shape the 

mapping from sequence to function. These statistical models complement physical models 

and can even be used to improve physics-based models. Statistical models have been used 

to understand the molecular basis of protein function and provide exceptional predictive 

accuracy for protein design. We present three key stages in data-driven protein 
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engineering—(1) representation: how to encode protein sequence/structure/function data, 

(2) learning: automatic detection of patterns and relationships in data, and (3) prediction: 

applying the learned models to design new proteins. 

1.2 The data revolution in biology 

The volume of biological data has exploded over the last decade. This is being driven by 

advances in our ability to read and write DNA, which are progressing faster than Moore’s 

law [5] . Simultaneously, we have also gained unprecedented ability to characterize 

biological systems with advances in automation, miniaturization, multiplex assays, and 

genome engineering. It is now routine to perform experiments on thousands to millions of 

molecules, genes, proteins, and/or cells. The resulting data provides a unique opportunity 

to study biological systems in a comprehensive and less biased manner. 

Protein sequence and structure databases have been growing exponentially for 

decades (Fig 1bc). Currently, the UniProt database [6]  contains over 100 million unique 

protein sequences and the Protein Data Bank [7]  contains over 100,000 experimentally 

determined protein structures. While there is an abundance of protein sequence and 

structure data, there is still relatively little data mapping sequence to function. ProtaBank 

is a new effort to build a protein function database [8] . Function data is challenging to 

standardize because it is highly dependent on experimental conditions and even the 

particular researcher that performed the experiments. Therefore, statistical modeling 

approaches are most useful on data that is generated by an individual researcher/research 

group. This allows for a consistent definition of “function” that is not influenced by 

uncontrolled experimental factors.  
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Many sequence-function data sets are generated by protein engineering 

experiments that involve screening libraries of sequence variants for improved function. 

These variants may include natural homologs, random mutants, targeted mutants, chimeric 

proteins generated by homologous recombination, and computationally designed 

sequences. Each of these sequence diversification methods explores different features of 

the sequence-function mapping and varies in their information content. Important factors 

include the sequence diversity of a library, the likelihood of functional vs nonfunctional 

sequences, and the difficulty/cost of building the desired gene sequences. 

Recent advances in high-throughput experimentation have enabled researchers to 

map sequence-function relationships for thousands to millions of protein variants [9, 10] . 

These “deep mutational scanning” experiments start with a large library of protein variants, 

and this library is passed through a high-throughput screen/selection to separate variants 

based on their functional properties (Fig 1e). The genes from these variant pools are then 

extracted and analyzed using next-generation DNA sequencing. Deep mutational scanning 

experiments generate data containing millions of sequences and how those sequences map 

to different functional classes (e.g. active/inactive, binds ligand 1/binds ligand and 2). The 

resulting data have been used to study the structure of the protein fitness landscape, 

discover new functional sites, improve molecular energy functions, and identify beneficial 

combinations of mutations for protein engineering [9, 11–13]. 

1.3 Statistical representations of protein sequence, structure, and function 

The growing trove of biological data can be mined to understand the relationships between 

protein sequence, structure, and function. This complex and heterogenous protein data 

needs to be represented in simple, machine-readable formats to leverage advanced tools in 
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pattern recognition and machine learning. There are many possible ways of representing 

proteins mathematically including simple sequence-based representations or more 

advanced structure/ physics-based representations. In general, a good representation is low 

dimensional but still captures the system’s relevant degrees of freedom. 

1.3.1 Representing protein sequences 

A protein’s amino acid sequence contains all the information necessary to specify its 

structure and function. Each position in this sequence can be modeled as a categorical 

variable that can take on one of twenty amino acid values. Categorical data can be 

represented using a one-hot encoding strategy that assigns one bit to each possible 

category. If a particular observation falls into one of these categories, it is assigned a “1” 

at that category’s bit, otherwise it is assigned a “0.” A protein sequence of length l can be 

represented with a vector of 20l bits; 20 bits for each sequence position (Fig 2). For 

example, assuming the amino acid bits are arranged in alphabetical order (A, C, D, E ... W, 

Y), if a protein has alanine (A) at the first position, the first bit would be 1 and the next 19 

bits would be 0. If a protein has aspartic acid (D) at the first position, the first two bits 

would be 0, the third bit 1, and the next 17 bits 0. This encoding strategy can be applied to 

all amino acid positions in a protein and represent any sequence of length l. One-hot 

encoding sequence representations are widely used in machine learning because they are 

simple and flexible. However, they are also very high dimensional (20l ≈ thousands of 

variables for most proteins) and therefore require large quantities of data for learning.   

Machine learning is widely used in the fields of text mining and natural language 

processing to understand sequences of characters and words. The tools word2vec and 
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doc2vec use neural networks to learn vector representations that encode the linguistic 

context of words and documents [14, 15]. These embeddings attempt to capture 

word/document “meaning” and are much lower dimensional than the original input space. 

Similar concepts have recently been applied to learn embedded representations of amino 

acid sequences [16]. This approach breaks amino acid sequences into all possible 

subsequences of length k. These subsequences are referred to as k-mers. As an example, 

the sequence PRFYLA contains the four 3-mers: PRF, RFY, FYL, and YLA. An amino 

acid sequence’s k-mers are treated as “words” and a neural network is used to learn other 

words that are found before/after a given word (i.e. a word’s context). Importantly, words 

that are found in similar contexts tend to have similar meanings. This concept can be used 

to build low-dimensional vector spaces that place similar words close together. For an 

amino acid sequence, this might mean that one amino acid triplet is comparable to another, 

and therefore, we only need one variable to represent both. This produces a low-

dimensional representation or “protein embedding” that captures the entire protein 

sequence. These protein embeddings can then be used to model specific properties such as 

thermostability.  

1.3.2 Representing protein structures 

The properties of proteins depend on sequence through their structure, therefore structure-

based representations provide a more direct link to function. Experimentally determining 

a protein’s three-dimensional structure (via crystallography, NMR, CryoEM) is 

significantly more challenging and time consuming than determining sequence or function. 

Therefore, most sequence-function data sets do not contain experimentally determined 

protein structures. Instead, this missing structural information can be approximated by 
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taking advantage of the extreme conservation of structures within a family. Homologous 

proteins with as low as 20% sequence identity still have practically identical three-

dimensional structures [17]. 

A protein’s overall fold can be represented by specifying which residues are 

“contacting” in the three-dimensional structure. These contacting residues could be defined 

as any pair of residues that has an atom within five angstroms. Other contact definitions 

could include different distance cutoffs, Ca-Ca distances, or Cb-Cb distances. A protein’s 

contact map specifies all pairs of contacting residues and provides a coarse-grained 

description of the protein’s overall fold. Importantly, contact maps are highly conserved 

within a protein family, and therefore any two evolutionarily related proteins have 

practically identical contact maps. If we assume a fixed contact map for a protein family, 

structural information can be represented using a one-hot encoding scheme similar to 

sequence encoding described above. Each pair of contacting residues can take on one of 

400 (202) possible amino acid combinations, which can be one-hot encoded using 400 bits. 

Therefore, the structure of a protein with c contacts can be represented with 400c bits. In 

contrast to sequence-based representations, this contact-based representation can capture 

pairwise interactions between residues. However, this increased flexibility comes at the 

cost of significantly higher dimensionality. 

Three-dimensional protein structures can also be predicted using molecular 

modeling and simulation software. Most protein sequence-function data sets can take 

advantage of homology modeling approaches that start with a closely related template 

structure, mutate differing residues to the target sequence, and run minimization methods 

to relax the structure into a local energy minimum. State-of-the-art homology modeling 
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methods can reliably predict protein structures with less than 2 angstrom atomic RMSD 

[18]. These predicted structures can be analyzed to extract key physiochemical properties 

such as surface areas, solvent exposure, and physical interactions (Fig 2). This approach 

was recently applied to model the kinetic properties of β-glucosidase point mutants [19]. 

The substrate was docked into β-glucosidase homology models, and this enzyme-substrate 

interaction was used to extract 59 physical features such as interface energy, number of 

intermolecular hydrogen bonds, and change in solvent accessible surface area. A simple 

linear regression model could relate these physical features to β-glucosidase turnover 

number, Michaelis constant, and catalytic efficiency. Physics-based representations tend 

to be lower dimensional than the sequence and contact encodings described above. They 

may also have good generalization within a protein family or even across protein families 

because they are based on fundamental biophysical principles.  

1.4 Learning the sequence-function mapping from data  

Advanced pattern recognition and machine learning techniques can be used to 

automatically identify key relationships between protein sequence, structure, and function. 

These tools are used for two primary tasks: supervised learning and unsupervised learning. 

Supervised methods, such as regression and classification, attempt to learn the mapping 

between a set of input variables and output variables. The term “supervised learning” arises 

because the algorithms are given examples of input-output mapping to guide the learning 

process. In contrast, unsupervised methods are not given information about the output 

variable, but instead try to learn relationships between the various input variables. Similar 

concepts have been used extensively in quantitative structure-activity relationship (QSAR) 

models, which are typically used to predict the chemical and biological properties of small 
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molecules [20]. QSAR models have also been applied to peptide and DNA sequences [21, 

22]. 

1.4.1 Supervised Learning (Regression/Classification) 

Regression is a supervised learning technique that is used to model and predict continuous 

properties. Continuous protein properties could include thermostability, binding affinity, 

or catalytic efficiency. Regression methods span from simple linear models to advanced, 

nonlinear models such as neural networks.  

Linear regression is the simplest regression technique and applies fixed weights to 

each input variable. A linear model is described by the following equation: 

𝑦 = 𝑋𝛽 + 	𝜖, 

where y is a vector of continuous output variables, X is a matrix of sequence/structure 

features (one protein variant per row), b is the weight vector, and 𝜖 is the model error. The 

model parameters (b) can be estimated by minimizing the sum of the squared error. This 

least-squares parameter estimate has an analytical solution: 

𝛽 = 𝑋)𝑋 *+ 𝑋)𝑦  

Here, 𝛽 corresponds to an estimate of the true b. 𝛽 can then be applied to new proteins to 

predict their properties: 

𝑦 = 𝑋,-.𝛽 

Linear regression provides a simple framework for relating sequence/structure to function, 

and predicting the properties of previously uncharacterized proteins. 



   

 

10 

Linear regression has been used to model chimeric cytochrome P450 

thermostability [23]. A library of chimeric P450s was generated by shuffling sequence 

elements from three related bacterial P450s [24] . The thermostability of 184 randomly 

chosen chimeric P450s was determined, and a linear regression model was used to relate 

sequence to thermostability. Each chimeric protein’s sequence was one-hot encoded by 

specifying which sequence elements were present. This encoding scheme is similar to the 

sequence-based one-hot encoding described above, but sequence “blocks” are used rather 

than individual amino acids. This simple regression model revealed a strong correlation 

between the predicted and observed thermostability (Fig 3). The model was applied to 

predict the thermostabilities of all 6,351 possible sequences in the chimeric P450 library, 

and the most stable predicted sequences were validated experimentally.  

Supervised learning methods, including linear regression, are highly susceptible to 

overfitting data. A linear model must have at least as many data points as model parameters 

to avoid overfitting. More complex nonlinear models require even more data. Overfitting 

occurs when there is not sufficient data and the model fits spurious correlations or noise, 

rather than the true underlying signal. An overfit model will display very small error on the 

training data, but large prediction error on new data points.  

All statistical models must be evaluated for overfitting and their ability to 

generalize to new, unseen data points. One method for model validation involves training 

the model on some fraction of the data and using the remainder to evaluate the model’s 

predictive ability. For example, one could train a model on 60% of the data and test the 

model on the remaining 40%. This holdout method is simple to implement, but also throws 

out valuable information because the model is not learning from the entire data set. Cross-
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validation is another method for model evaluation that more effectively utilizes the 

available data. Cross-validation is similar to the holdout method, but rotates through 

multiple training set-test set combinations. For example, ten-fold cross-validation breaks 

the data into ten subsets; a model is trained on nine of these subsets and used to predict the 

tenth subset. This process is repeated over all ten data folds (i.e. testing on all ten subsets) 

and the results are averaged. Cross-validation allows all data points to be used in model 

training and evaluation. 

Overfitting can be reduced using regularization methods that favor simpler models. 

Regularized parameter estimation involves minimizing the model’s squared error in 

addition to the magnitude of the model parameters. This can be achieved by including a 

penalty term on the norm of the parameter vector:  

min
2

𝑋𝛽 − 𝑦 4 + 	𝜆 𝛽 , 

Here, the first term corresponds to the model’s squared error, the second term is the 

magnitude of the model parameters, and 𝜆 tunes the relative influence of these two terms. 

n determines the type of vector norm and is typically equal to 0, 1, or 2. L0 regularization 

(n=0) penalizes the total number of non-zero parameters in the model, L1 regularization 

(n=1) penalizes the sum of the parameter absolute values, and L2 regularization (n=2) 

penalizes the sum of the squared parameters. This minimization problem can be solved 

analytically if n=2 or using convex optimization if n=1. The hyperparameter 𝜆 can be 

determined using cross-validation. Combinations of these penalties can also be used, such 

as elastic net regression, which utilizes both L1 and L2 norms.  

While regression methods model continuous properties, classification methods are 

used to model discrete protein properties such as folded/unfolded or active/inactive. 
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Classifiers are especially important for modeling data generated by high-throughput 

methods such as deep mutational scanning because these methods often bin proteins into 

broad functional classes. Classification methods try to relate input feature vectors to 

functional classes (e.g. active/inactive or folded/unfolded). Like the regression models 

discussed above, classification models can be evaluated using cross-validation, and 

regularization can be used to prevent overfitting. 

Logistic regression is simple classification method that transforms a linear model 

through the logistic (sigmoid) function to produce binary outputs. The name “logistic 

regression” is a misnomer because it actually performs classification rather than regression. 

Logistic regression parameters can be identified using iterative methods or convex 

optimization. Logistic regression was recently used to refine molecular energy functions 

for designing de novo miniproteins [25] . Thousands of miniproteins were designed using 

Rosetta protein design software, and these designs were screened for folding using a high-

throughput yeast display assay. Each protein’s structure was modeled and used to generate 

physical input features such as number of H-bonds, Lennard-Jones energies, and net 

charge. Logistic regression was then used to map these physical features to whether a 

design was successful or unsuccessful. The statistical model revealed that a protein’s buried 

nonpolar surface area was a dominant factor in determining design success. The logistic 

regression model was used to rank designs and drastically improved the rate of successful 

designs.  

Kernel methods are another modeling approach that is widely used in machine 

learning and bioinformatics. In contrast to the parametric regression/classification methods 

described above, kernel methods do not require input feature vectors, but instead a user 
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defined similarity function (or kernel function) is used to compute the “implicit features” 

by comparing pairs of data points. Kernel methods are more effective at dealing with high 

dimensional problems than parametric models because they do not have to store large 

parameter matrices. The similarity function could be as simple as an inner product between 

feature vectors, or it can represent more complex, potentially infinite dimensional, 

relationships between data points [26] . This flexibility allows them to learn from 

unstructured objects such as biological systems. Popular kernel methods include Support 

Vector Machines (SVMs) and Gaussian Process (GP) regression/classification.  

Gaussian processes use kernel functions to define a prior probability distribution 

over a function space. This allows predictions of both the function mean and its confidence 

intervals. Gaussian processes have been used to model stability and activity of cytochrome 

P450s [27] . A structure-based kernel function was developed to define structural similarity 

between pairs of proteins. GP regression using this kernel function explained 30% more of 

the variation in P450 thermostability in comparison to linear regression and sequence-

based kernels. The structure-based kernel was also used to model enzyme activity and 

binding affinity for several P450 substrates. 

1.4.2 Unsupervised learning/semi-supervised learning 

Unlike supervised learning, where the data is labeled or categorized, in unsupervised 

learning there are no labels associated with each data point. Unsupervised learning can be 

used to find patterns such as clusters or correlations within data. The main drawback of 

unsupervised techniques is that the outputs are unknown, i.e. there is no mapping to protein 

function. However, these techniques still provide valuable information about proteins 

because of the massive amount of protein sequence data that is currently available. 
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Examples of unsupervised methods include clustering, where data points are grouped based 

on similarity, and principal component analysis (PCA). PCA is a projection of data onto 

lower dimensional space in a way that maximizes the variance of the projection. This 

converts high dimensional input variables into a set of uncorrelated principle components 

that are ranked based on their variance. These principle components can be used to reduce 

the dimensionality of a problem and identify important relationships among variables [28]  

Unsupervised methods can be used to identify patterns in multiple sequence 

alignments (MSAs) of evolutionarily related proteins. Statistical coupling analysis (SCA) 

analyzes residue coevolution by performing principal component analysis on a protein 

family’s MSA [29] . The dominant principle components consist of positions that coevolve 

and can reveal networks of spatially connected amino acids called protein sectors (Fig 4). 

Protein sectors have been demonstrated to play roles in protein dynamics and allostery and 

may represent functional modules [30, 31] . EVmutation is another unsupervised method 

that models natural sequence variation and simultaneously considers epistasis (non-

independence of mutational effects) [32] . Although EVmutation is only parameterized on 

an MSA (i.e. it is unsupervised), it is capable of predicting the functional effects of amino 

acid substitutions and residue interdependencies.   

 Semisupervised methods learn from data sets that contain both unlabeled and 

labeled data points. Semisupervised approaches can be used in protein engineering to 

transfer knowledge across protein families. A semisupervised approach was recently 

developed that trained an unsupervised embedding model (doc2vec) on a large protein 

sequence database [16] . These embeddings were then used as the inputs for supervised 
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Gaussian process regression. This approach was used to model channelrhodopsin 

membrane localization, P450 thermostability, and epoxide hydrolase enantioselectivity.  

1.5 Applying statistical models to engineer proteins 

Statistical modeling approaches provide unprecedented predictive accuracy for a 

wide variety of complex protein functions/properties. These models can be used to 

understand protein function and design new proteins. In addition, many classes of statistical 

models can provide confidence intervals for their predictions. These confidence intervals 

can be used to gauge whether a prediction is valid or if it contains too much uncertainty to 

be useful. We discuss several protein engineering strategies that leverage the predictive 

power of statistical models.  

The most straightforward data-driven protein engineering approach involves 

training a model on a data set and then extrapolating that model to design best predicted 

sequences. This method was applied to engineer thermostable fungal cellobiohydrolase 

class II (CBHII) cellulases [33] . A panel of 33 chimeric CBHIIs was characterized for 

their thermal inactivation half-lives at elevated temperatures. This data was used to train a 

linear regression model that related sequence blocks to thermal tolerance. This model was 

then used to design 18 chimeras that were predicted to have enhanced stability relative to 

the parent enzymes. Most of these designed CBHII chimeras could hydrolyze cellulose at 

higher temperatures than most stable parent. A key feature of this extrapolation-based 

design approach is a relatively small training set (<1% of possible chimeras) can be used 

to make predictions over a massive combinatorial sequence space. The CBHII regression 

model also pointed to a single sequence block that contributed over 8 °C of thermostability 

[34] . Further analysis revealed that a single amino acid substitution in that block (C313S) 
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was responsible for the elevated thermostability. This example highlights how statistical 

models can be used to uncover molecular mechanisms contributing to protein function.  

It is important to consider the space of sequences that a statistical model can make 

valid predictions on. This prediction domain is highly dependent on the model’s 

sequence/structure representation. For example, consider a model that uses one-hot 

encoding to represent protein sequences. This model can only learn the effect of amino 

acids that are observed in the training set, and therefore can only make predictions about 

sequences composed of combinations of these observed amino acids. Representations that 

include information about amino acid properties and/or protein structure can broaden a 

model’s prediction domain. Representations that use three-dimensional structural models 

to extract key physiochemical properties have potential to generalize well within a protein 

family and even across protein families.  

Statistical models can be incorporated into an iterative directed evolution 

framework. ProSAR uses a statistical model to guide the search for beneficial mutations 

[35] . This model consists of a one-hot encoded sequence representation and a partial least 

squares linear regression model to relate sequence to function. A mutational library is 

screened, and the model classifies each amino acid substitution as deleterious, neutral, 

beneficial, or underdetermined (i.e. needing more information). Substitutions that are 

beneficial or underdetermined are combined with new substitutions in the next round, and 

this screen-and-learn process is repeated over multiple rounds. The ProSAR method was 

used to engineer bacterial halohydrin dehalogenases (HHDH) to perform a cyanation 

reaction important for the synthesis of the cholesterol-lowering drug Lipitor [35] . 18 

rounds of ProSAR yielded HHDH variants with over 35 mutations and increased the 
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volumetric productivity of target reaction by ∼4,000-fold. More recently, ProSAR-driven 

evolution was used to evolve ultra-stable carbonic anhydrase variants (107 ˚C 

thermostability at pH 10 in 4.2 M solvent) that enhanced the rate of CO2 capture by 25-

fold over the natural enzyme [36] . 

Statistical models can also be used in an active learning setting that very efficiently 

explores protein sequence space. Active learning involves sequentially designing an 

informative experiment, performing that experiment, learning from the resulting data, and 

repeating the process over multiple cycles (Fig 5a). For protein engineering, the active 

learning algorithm must first learn the sequence-function mapping and then apply this 

knowledge to design optimized sequences. The primary challenge is how to allocate 

experimental resources toward understanding the sequence-function mapping versus 

designing optimized sequences. This trade-off is referred to as the “exploration-

exploitation dilemma”, and the objective is to minimize the amount of exploration that is 

needed to predict optimized sequences. Upper confidence bound (UCB) algorithms 

provide a principled framework for trading off between exploration and exploitation modes 

[37] . The UCB algorithm iteratively selects the point with the largest upper confidence 

bound (predicted mean plus confidence interval) and therefore encourages sampling of 

points that are simultaneously optimized and uncertain (Fig 5b). A UCB search algorithm 

was combined with a Gaussian process regression model to optimize cytochrome P450 

thermostability [27] . Eight rounds of UCB optimization identified thermostable P450s that 

were more stable than variants made by rational design, recombination or directed 

evolution. 
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1.6 Conclusions and future outlook 

The protein sequence-structure-function mapping involves thousands of interacting atoms, 

a practically infinite number of dynamic conformational states, and physical processes that 

span multiple length and time scales. This mapping is extremely difficult to model from a 

physical perspective. In contrast, statistical methods are able to learn complex 

interrelationships directly from experimental data. This top-down understanding of 

complex systems allows discovery of new functional mechanisms and provides exceptional 

predictive accuracy.  

This chapter provides an overview of emerging data-driven approaches to model 

and engineer proteins. We have described statistical representations of proteins, how these 

representations can be used to learn from data, and practical protein engineering 

applications of these models. As a relatively new field, there is still significant room for 

improving these methods, especially in the area of sequence and structure representations. 

Ideal representations would be sparse, but still have a broad prediction domain. These 

representations may integrate different sources of information (evolutionary, biochemical, 

and physical) into a single unified model. Advanced machine learning methods such as 

dictionary learning and deep learning attempt to learn new representations directly from 

data and could play an important role in protein modeling. Another key challenge for the 

field is data access and sharing. While there are many interesting sequence-structure-

function data sets, they are often buried in a publication’s supplemental information and 

very difficult to parse/organize. Efforts to share data on public repositories and databases 

such as ProtaBank will greatly accelerate progress in the field. 
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In addition to proteins, statistical approaches can be used to model genotype-

phenotype relationships across all levels of biological organization. For example, linear 

regression was used to model product titers in a multi-enzyme biosynthetic pathway; this 

model was then used to optimize enzyme expression levels to maximize overall product 

production [38] . Another example used compressed sensing methods to model a protein’s 

DNA-binding specificity [39] . Statistical methods have been widely used in genetics relate 

phenotypes to genetic loci using quantitative trait locus (QTL) mapping [40] . 

Data-driven approaches are transforming every field of science and engineering. 

This revolution has been triggered by the confluence of advances in data generation, data 

access, and data analysis/interpretation. Advanced experimental technologies are allowing 

us to analyze biological systems on an unprecedented scale and resolution. The resulting 

data is also becoming readily accessible through large, public biological databases and 

repositories. At the same time, there have been tremendous advances in artificial 

intelligence and pattern recognition. Widespread interest in machine learning has also 

driven improvements in software packages such as the Scikit-learn and Keras deep learning 

Python libraries. Data-driven approaches leverage the continuously expanding sea of data 

and will play an increasingly important role in biological discovery and engineering. 

  



   

 

20 

1.7 Figures 

 

Figure 1.1: The growth of biological data. (a,b) DNA sequencing and synthesis 
technologies are advancing faster than Moore’s law. As a result, costs have decreased 
exponentially over the last two decades. (c,d) Large-scale genomics, metagenomics, and 
structural genomics initiatives have resulted in exponential growth of protein sequence and 
structure databases. (e) Deep mutational scanning experiments combine high-throughput 
screens/selections with next-generation DNA sequencing to map sequence-function 
relationships for thousands to millions of protein variants. 
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Figure 1.2: Sequence, structure, and function representations. (a) A protein’s sequence 
folds into a three-dimensional structure, and this structure determines its function and 
properties. (b) Protein sequences can be represented using a one-hot encoding scheme that 
assigns 20 amino acid bits to each residue position. A bit is assigned a value of “1” if the 
protein has the corresponding amino acid at a particular residue position. (c) Structure-
based representations use modeled protein structures to extract key physiochemical 
properties such as hydrogen bonds, total charge, or molecular surface areas. (d) Protein 
functions can be continuous properties such as thermostability or catalytic efficiency, or 
discrete properties such as active/inactive. Discrete properties can be represented using a 
binary (0 or 1) encoding.  
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Figure 1.3: A linear regression model for cytochrome P450 thermostability. This model 
relates sequence blocks of chimeric P450s to their thermostability values. The plot shows 
the model’s cross-validated predictions for 184 chimeric P450s. 
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Figure 1.4: Unsupervised learning from protein sequences. (A) Statistical coupling 
analysis of the RNase superfamily reveals five independent components (ICs) that 
correspond to groups of coevolving residues (B) These five ICs form contiguous “sectors” 
in the three-dimensional protein structure. Figure was adapted from [31] . 
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Figure 1.5.  Active machine learning. (a) Active learning involves designing maximally 
informative sequences, experimentally characterizing these sequences, learning from the 
resulting data, and repeating this process over multiple iterations. (b) Upper-confidence 
bound (UCB) optimization involves iteratively selecting the sequence with the largest 
upper confidence bound (mean + confidence interval). The schematic illustrates sequence 
space in one dimension and the true mapping from sequence to function as a black line. 
Characterized sequences (small red dots) have accurate model predictions and small 
confidence intervals. The first panel shows five characterized sequences, which cause the 
model to propose one UCB optimal sequence (marked with a star). The second panel shows 
the results after this UCB optimal sequence is characterized—this causes a new UCB 
sequence to be proposed. This iterative process is guaranteed to efficiently converge to the 
optimal point.  
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CHAPTER 2. ENGINEERING CRISPR-CAS12A WITH 

ALTERED PAMs 

2.1 Introduction 

CRISPR nucleases are leading a major upheaval with widespread use for many important 

applications in biotechnology and biomedical research [41-42]. CRISPR enzymes are 

highly versatile and work as a pair of molecular scissors to target user-specified DNA 

sequences.  These enzymes have been used to develop gene editing technologies as well as 

biodiagnostics and medical therapies. For example, therapies are being developed using 

CRISPR-Cas9 for genetic diseases such as sickle cell anemia [43]. However, a different 

CRISPR locus found involving Cas12a has possible advantages. Notably, CRISPR-Cas12a 

has both increased specificity and reduced off-target effects in both mammalian and plant 

genomes [44]. Additionally, Cas12a has been shown to be more suitable for multiplexed 

applications [45] because it can process a single RNA strand into multiple different gRNAs 

by recognizing repeat sequences.  

CRISPR associated (Cas) proteins such as Cas9 and Cas12a have been derived from 

prokaryotic immune systems. The microbes target the genetic material or DNA of invading 

virus using Cas9 and Cas12a by using a guide-RNA transcribed separately. However, to 

prevent self-targeting of the guide-RNA transcripts, microbes have evolved to additionally 

require a protospacer adjacent motif or PAM sequence (2-6 bp) for Cas-function by 

forming an R-loop (See Figure 2.1). For example, the wild type version of Cas12a derived 

from Acidaminococcus sp. BV3L6 (AsCas12a) can be used to only target DNA that has a 
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correct corresponding PAM motif (TTTV). The PAM motif is highly conserved with most 

Cas12a homologs requiring thymidine-rich PAMs 18 to 23 base pairs before the cleavage 

site. CRISPR-Cas proteins have varying PAM profiles and thus PAMs are attractive targets 

for protein engineering. 

Millions of years of evolution have made PAMs challenging to alter. Protein design is 

non-trivial [46]; the sequence space is vast and on the order of 20N for proteins with N 

amino acids [47]. Traditional methods of rational design and directed evolution are slow. 

While rational design approaches have high function diversity, they require prior 

knowledge. Moreover, directed evolution approaches yield low functional diversity. As 

Cas12a is a multi-domain protein and ~1300 amino acids long with unknown 

conformations, CRISPR engineering can be accelerated using data-driven strategies [48].  

Here, we develop a data-driven strategy to engineer Cas12a with a high throughput 

screening assay, a large library of variants and statistical analysis. Fluorescence activated 

cell sorting provided a platform for a high throughput screening assay. Homologous 

recombination of structurally conserved regions or ‘blocks’ Cas12a yielded a large library 

of variants. With six homologs and 8 blocks, 68 variants are generated (See Figure 2.2). In 

addition, to reconstruct whole chimeric protein sequences, sorted population sequences 

(106) were run using nanopore sequencing methods and processed on high-throughput 

computing (CHTC) pools. Experimental data analysis using log enrichment showed a 

strong shift after sorting. Together, these data show that our data-driven strategy can be 

used to engineer Cas12a with novel molecular functions. 
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2.2 Results 

2.2.1 Development of a high-throughput assay for Cas12a-PAM binding 

Fluorescence activated cell sorting (FACS) is a commercialized application of flow 

cytometry. In a FACS instrument, fluorescent parameters of cells can be analyzed by a 

focused laser beam at high rates of 107/hour [49]. A charge is applied to the cells, which 

are deflected into a collection tube by a charged plate. We report a FACS-based high-

throughput screening method for screening dCas12a enzyme libraries. The screening is 

based on an assay called PAM-SCANR developed in the Beisel lab. As shown in Figure 

2.3A and 2.3B, the assay links dCas12a binding and GFP (Green Fluorescent Protein) 

production [50]. Functional dCas12a binds to their target site to repress the lacI gene that 

is repressing the expression a green fluorescent protein (GFP) reporter. With high 

repression activity, higher GFP is expressed and fluorescence can be quantified. To 

benchmark this method for protein engineering, an additional control with a non-

interacting dCas12a was made by early truncation using a stop codon and addition of a 

unique NotI restriction site. Flow cytometry was performed using cells transformed with 

Beisel labs 3-plasmid PAM-SCANR system with (1) functional PAM (TTTA) and non-

functional PAM (AAAA) reporter genes; (2) plasmid encoding guide-RNA to lacI 

promoter; (3) plasmid encoding protein dFnCas12a/NotI-dFnCas12a. Flow cytometry 

results are shown in Figure 2.3C show an expected high fluorescence visible to the eye 

with the functional PAM reporter gene and functional dFnCas12a.  

To further adapt PAM-SCANR to protein engineering, protein expression was 

optimized using a bicistronic design (BCD) for the ribosome binding site. The initial 
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ribosome binding site used in PAM-SCANR wasn’t producing fluorescent activity with 

the chimeras. In BCD, a leader peptide is produced followed by your target gene under 

control of the same ribosome promoter. Here, the stop codon of the leader peptide (TAA) 

and start codon (ATG) of your gene overlap so that ribosomes are ‘pointed’ to the target 

gene of interest [51].  

2.2.2 Chimeric Cas12a library design and construction 

To perform chimeragenesis for large multi-domain proteins such as Cas12a, protein 

domains can serve as logical components to shuffle. As larger proteins with multiple 

domains can have more conformational diversity for function, mutations distal from the 

active site can have substantial effects on enzyme activity [52].  Conserved structural 

domains were identified  based on crystal structures of FnCas12a, AsCas12a and LbCas12a 

[53]. By shuffling conserved structural protein domains, we infer that there should be low 

disruption of structural contacts and a library with high functional activity. Six parents were 

chosen to create a family of chimeric proteins. All known parent enzymes commonly used 

as mammallian genome editing tools were chosen as parent homologs – Acidaminococcus 

sp. BV3L6 (AsCas12a), Lachnospiraceae bacterium ND2006 (LbCas12a), Francisella 

tularensis subsp. novicida (FnCas12a), and Moraxella bovoculli (MbCas12a). 

Additionally, two other homologous proteins were selected with low activities to add 

functional diversity – Lachnospiraceae bacterium COE1 (Lb6Cas12a) and Porphyromonas 

crevioricanis (PcCas12a). Moderately low pairwise sequence identity was found (36-49%) 

with a multiple sequence alignment of the parent proteins. 

Based on the sequence alignment of domain boundaries, 8 blocks were made as 
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shown in Figure 2.4A – (1) WED-I, REC-I; (2) REC-II; (3) WED-II; (4) PI; (5) WED-III; 

(6) RuvC-I, II; (7) Nuc; (8) RuvC-III. Catalytic residues in the RuvC domain (Block 6) 

were inactivated to make a dCas12a library. This block could be switched to having active 

residues for use in a screening assay with active Cas12a. Unique sequence motifs that could 

be recognized by type IIS restriction enzymes were used as block breakpoints to enable use 

of Golden Gate assembly [54]. These sites were carefully selected to result in overhang 

sequences that are assembled in a specific orientation without scarring. After Golden gate 

assembly in two steps and linearization, the plasmid library can be sequenced for analysis. 

As shown in Figure 2.4B, we constructed 2 mini-libraries with half of the domains each to 

produce 64 or 1296 combinations. The resulting theoretical library size is then 12962 or 

1,679,616 chimeras. We showed moderate coverage of this library after construction with 

3.5 million transformants checked by counting colony forming units (cfu). The constructed 

library for this protein engineering strategy has close to 3% fraction functional based on 

colony counts and flow cytometry data. This translates to ~50,000 active Cas12a mutants 

binding to the functional PAM sequence TTTA. 

2.2.3 Sequence-function mapping with FACS and nanopore sequencing 

For testing reproducibility of our results, FACS was done three times on the constructed 

chimeric library binding to the canonical PAM – TTTA. The library was transformed into 

CB414 cells (a strain of E. coli from Beisel lab which is DCRISPR-Cas and DlacI-lacZ) 

containing the guide-RNA plasmid and TTTA PAM-SCANR reporter gene plasmids. The 

library was grown overnight at 37°C, 250 rpm in triplicate before sorting on BDFACSAria 

(UW Flow Core). We controlled for random growth bias in the experiment by sequencing 
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libraries both before and after sorting. For each sorting experiment, roughly 15,000,000 

cells were sorted with ~20,000 cells sorted as positive. After cells were sorted, they were 

recovered by growth overnight at 37°C, 250 rpm and on agar plates. See sort statistics in 

Table 1. 

A sequencing read was labelled as functional if identified in the sorted library. To 

identify sequences, we can employ short-read or long-read sequencing. Short-read or 

Ilumina sequencing can be problematic with large chimeric proteins because the sequence 

homology between the small sequencing fragments of different variants can be hard to 

discern. We thus performed long-read nanopore sequencing on our chimeric libraries. For 

an unsorted library, we show that nanopore sequencing is able to capture long plasmid 

reads (8kb fragments) and could capture 4 million reads with a median length of 7kb. 

However, nanopore sequencing data is error prone with error rates as high as 15% [55]. 

Fortunately, this is not an experimental limitation for use on chimeric protein sequences 

which are made up of blocks of DNA. These blocks of DNA can be identified with the 

errors using computational methods by computing the sequence identity between the read 

and a block. Correct block identifications had >90% sequence identity compared to <80% 

sequence identity for incorrect block identifications. 

Each read was aligned with every possible block sequence (6 parents and 8 blocks) 

and both top and bottom strands of DNA using Basic Local Alignment Search Tool 

(BLAST). Due to the number of reads in ever library being on the order of 106 and 96 

BLAST alignments per read, processing on a local drive, assuming 1 second per alignment, 

would take >100 days of computational time. We developed a computational pipeline in 

Python3 to shorten the computational time using high-throughput computing ‘pools’ at the 
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Center for High-Throughput Computing (CHTC) at UW-Madison. We validated our 

method by performing a single alignment for predicted sequences as shown in Figure 2.5. 

Using this computational pipeline, we identified close to 260,000 unique chimeric proteins 

in a library after Golden gate assembly.  

2.2.4 Enrichment analysis of the blocks 

After nanopore sequencing on the FACS runs, the sorted and unsorted datasets for each 

sorting experiment were analyzed using site-wise or block-wise enrichment and sequence 

based enrichment. Analysis was done by normalizing number of observations of a block or 

a sequence by the total number of observations in a dataset. All data sets have 1,000,000 

to 2,000,000 sequences as shown in Table 2. 

Site-wise enrichment was calculated for every parent at each block position as 

shown in Figure 2.6. This initial bias we see in the unsorted libraries is likely due to growth 

bias from growth in E. coli. The unsorted (u) and sorted (s) libraries were both sequenced 

for each sorting replicate. The number of observations or counts for each sorting replicate 

was then analyzed using log enrichment scores defined as: 

𝐸𝑆89 = log
𝑠89
𝑠)9

− log
𝑢89
𝑢)9

, 𝑖 = 1,2,3…6, 𝑗 = 1,2,3…8 

where i and j correspond to the parent number and block number respectively; s and u 

correspond to sorted and unsorted counts, T refers to total for that block number. We also 

demonstrate that our screens are reproducible. The enrichment scores are highly correlated 

between sorting replicates as shown by the goodness of fit or R-squared values (>0.85). 

This is further demonstrated with calculating the best chimeric sequence for each replicate. 
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The best chimeric sequence was constructed piece-wise using enrichment scores: 

45216635, 45616645, 45616635 for the first, second and third sorting replicate 

respectively. They are shown to be similar with a consensus sequence of 45616635 (Fn-

Lb6-Pc-As-As-Lb-Lb6).  

 Sequence-wise enrichment was calculated using a similar metric for enrichment 

scores defined as: 

𝐸𝑆8 = log
𝑠8
𝑠)
− log

𝑢8
𝑢)
, 𝑖 = 1,2,3… > 10I 

where i instead corresponds to the sequence number in the set; s and u correspond to sorted 

and unsorted counts, T refers to total for that sequencing set. We did observe 65,443 unique 

sequences across replicates. Due to the large theoretical library size (~1,600,000), there is 

some more variability in sequences observed between replicates that limited our analysis.  

2.2.5 Classification analysis for FnCas12a-PAM binding 

CRISPR-Cas12a-PAM interactions have been characterized by collaborators in the Beisel 

lab for all 256 PAMs (4 nucleotide) based on enrichment [50]. Using this, we modeled 

FnCas12a-PAM binding to further our understanding of how many experiments to run and 

how much data we would need to make a generalized model for Cas12a-PAM binding. 

Future studies could be done with data from FACS screens using different subsets of PAM 

reporter plasmids to build a generalized model of Cas12a’s binding properties to all 256 

PAMs. We performed a classification analysis on this data to test different models for 

analysis with future experiments. 
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For classification analysis, we looked at clustering the top PAMs of the dataset. The 

average enrichment score of the top 16 PAMs was 10-fold higher than the average of the 

remaining PAMs. Thus, we set the top 16 PAMs and classified them as ‘binders’ for our 

model: TTTG, TTTC, TTTA, GTTA, GTTC, CTTA, GTTG, CTTC, CTTG, AAAA, 

ATTG, ATTA, AAAT, ATTC, AATT, TCTC. We compared different machine learning 

methods in Python3’s sklearn package to predict binding – linear regression, logistic 

regression and neural networks. Models were trained using data from 2 additional PAMs 

(TTCA, TGTA) and then used to predict the binding (yes/no) for the remaining 253 PAMs. 

These PAMs were chosen as they captured major deviations from the canonical sequence 

of TTTA at the second and third nucleotide positions. The ROC curves shown in Figure 

2.7 show that all of our models perform well with high AUC values. We constructed multi-

layer perceptrons in sklearn (a form of neural networks) comprised of three layers – 100 

nodes on the input layer, 10 nodes on the other layers. Logistic regression has a high AUC 

and is the most suitable for future analysis as the model is less complex. 

2.3 Discussion 

Protein sequence space is high-dimensional. For Cas12a, which is 1300 amino acids long, 

it would take billions of years to test every possible sequence– 201300 mutants ~ infinity. 

This combinatorial explosion continues with interaction terms between residues; Cas12a 

uses WED, REC1 and PI domains to interact with the PAM site [56]. Proteins are thus 

highly versatile and amenable to high-throughput methods and data-driven strategies. Our 

chimeric protein libraries, FACS-based screening assay and nanopore sequencing methods 

demonstrate a data-driven strategy to explore this vast space. We have identified sequences 

for further testing by looking at the best sequence from block-based enrichment scores. 
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The experiments and statistical analysis we present can be used to perform informed or 

augmented rounds of directed evolution.  

 We demonstrate the construction of a large chimeric library, made using domain 

swapping, for analysis. Chimeric proteins maintain high functionality as sequences 

selected through evolution and mimics iterative homologous recombination seen in nature. 

Random mutagenesis can lead to many unstable proteins that are less functional; chimeric 

proteins occupy a functionally ‘enriched ridge’ in protein sequence space as they are 

combinations of functional folds [57]. While orthologous proteins maintain conserved 

active sites, chimeric proteins have been shown to change substrate specificity in 

cytochrome p450s [58-60]. Indeed, for Cas12a, domain swapping has been used to change 

PAM specificity [61]. Thus, there is reason to infer that our library would contain mutants 

with novel PAM recognition profiles. A previous study has been conducted to alter PAM 

specificity in Cas12a effector proteins by altering residues in close proximity to the PAM 

DNA duplex using random mutagenesis [62]. 

 Our developed assay’s level of sequencing throughput (106) and sequence diversity 

(106) is what makes our strategy data-driven. We showed that sequence-function mapping 

using FACS is robust and can screen millions of cells containing variants of Cas12a with 

>90% sorting efficiency. FACS provides high quality sorting using commercial equipment. 

We see that long-read sequencing or nanopore sequencing can identify millions of variants 

using a computational pipeline to identify chimeric sequences. MinION nanopore 

sequencing provides high sequencing throughput for larger proteins such as Cas12a. 
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 We demonstrate a generalized model for Cas12a-PAM binding using machine 

learning methods on FnCas12a-PAM enrichment data from the Beisel lab. Using just 2 

additional PAMs, we can capture most of the functional diversity for all of the possible 

PAM sequences. This is promising in that for a given chimera, we may only need to test 

only a few PAM sequences to predict activity on others. However, since this data analysis 

was limited to FnCas12a, generalizing our analysis would first need to be limited to 

proteins that are close to the homolog FnCas12a and other parent proteins.  

 You can only obtain proteins for which you select the properties while performing 

your assay. Our dCas12a assay screens for binding activity to a particular PAM which may 

not necessarily translate to active Cas12a PAM profile. A kinetic study using stopped flow 

fluorescence found cleavage to be favorable and fast after R-loop formation [44]. Thus, it 

is theorized that assaying for site specific binding using dCas12a should correlate well with 

subsequent site specific cleavage using Cas12a. However, our assay does not select for 

PAM specificity or off-target effects – both desirable targets for protein engineering. 

 Future directions on this work would include testing for other Cas12a PAMs or 

other screening conditions such as pH, temperature. For example, in the application for 

genome editing in plants, Cas12a is temperature sensitive at temperatures lower than ~28°C 

[63]. It would be simple to assay for PAM binding at different temperature by just growing 

the bacteria at different temperatures overnight. Library growth conditions can be 

modulated to the desired screening outcome. 
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2.4 Figures and Tables 

Table 2.1: Sort statistics for each sorting replicate. Each sort was done after controls were 
run – GFP reporter gene with both positive and negative PAM and dFnCas12a plasmids. 
Roughly 15,000,000 cells were run with 20,000 events sorted positively. Function after 
sort is checked by colony counts for GFP from post-sort plating on agar plates. 

 Sort replicate 1 Sort replicate 2 Sort replicate 3 

Sorted cells 19,178 19,725 18,208 

Total events 16,156,994 15,527,086 15,715,748 

Time to sort 23:15 25:02 22:20 

Function after sort 88% 91% 91% 

 

Table 2.2: Nanopore sequencing data – chimeras with complete sequences. All data sets 
contain 1,000,000 to 2,000,000 complete sequences after analysis on the CHTC. 

 Unsorted (counts) Sorted (counts) 

Sort replicate 1 1,699,697 1,373,371 

Sort replicate 2 1,763,761 1,870,868 

Sort Replicate 3 1,237,235 1,445,443 
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Figure 2.1. R-loop formation of Cas12a. An RNA molecule guides Cas12a to the target 
DNA site with matching genetic material. This does first require binding to the PAM site 
preceding the target DNA site (TTTA for Acidaminococcus sp. BV3L6). Cleavage of DNA 
occurs 18 to 23 bases downstream of the PAM site on the non-target DNA strand. The 
double-stranded break is staggered. 

 

 

 

 

 

 

 

Figure 2.2. Chimeragenesis of proteins. Parent proteins are chosen based on sequence 
homology. Blocks or domains of parent proteins are recombined to make chimeras with 
novel molecular folds. 
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B
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Figure 2.3. Assay for Cas12a-PAM binding. (A) Fluorescent assay for binding activity 
with dCas12a NOT-gate repression system from Beisel lab. dCas12a will bind to a PAM 
site adjacent to a lacI promoter. GFP is under control of lacI with a lacZ promoter site. 
Functional dCas12a thus turns fluorescent by inhibiting lacI expression and thus stopping 
lacI from blocking GFP expression (B) Assay from Beisel lab called PAM-SCANR has 
three plasmid system. PAM-SCANR consists of a  Cas plasmid expressing dCas12a, a 
CRISPR plasmid expressing guideRNA and a reporter plasmid expressing GFP with 
different PAM sites.  To test the assay, a Cas plasmid was made with an early stop codon 
NotI in the middle of the protein to form an inactivated version as a control. (C) The three-
plasmid system was tested using two different PAM sites – positive (TTTA) and negative 
(AAAA) by transformation into E. coli. Flow cytometry shows a clear separation for the 
positive sample with functional dCas12a and positive PAM. Results are also visible under 
a blue-light transilluminator (right). 
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Figure 2.5. MinION nanopore sequencing data processing workflow. Sequences are 
aligned using BLAST on the CHTC to get alignment scores for each parent-block 
combination for the top and bottom strands. The scores are compared to identify the 
chimeric sequence. These sequences are validated by realignment with the sequencing read 
to ensure a high percentage identity. 

A B

Figure 2.4. CRISPR-Cas12a blocks and cloning. (A) Pymol rendering for 
Acidaminococcus sp. BV3L6 (AsCas12a) with different structural domains highlighted. 
Domains are highlighted by block number as shown on the bottom starting with WED-I, 
REC-I. (B) Domains shown are recombined in two halves using Golden gate cloning 
[54]. Golden gate cloning is a method using type IIs restriction enzymes (BbsI, BsaI-
HFv2) to recombine DNA fragments in a specific orientation. 
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Figure 2.7. Comparison of machine learning models for PAM classification. Classification 
is performed on 253 PAMs after training a model made using linear regression, logisitic 
regression and multi-layer perceptrons (MLPs) on data for 3 PAMs (TTTA, TTCA, 
TGTA). ROC curves are drawn and AUCs are calculated to compare these models. The 
AUCs are comparable and indicate that our models perform well at classification of binder 
PAMs. 

 

 

Figure 2.6. Enrichment scores on Cas12a blocks. The results are shown from sorting 
replicate 1 (left), sorting replicate 2 (middle), sorting replicate 3 (right) We performed 
enrichment analysis using log scores on each sort. The site-wise or block-wise enrichment 
scores look reproducible across sorts with a similar pattern seen across replicates here. 
Here, p1 refers to AsCas12a, p2 refers to MbCas12a, p3 refers to LbCas12a, p4 refers to 
FnCas12a, p5 refers to Lb6Cas12a and p6 refers to PcCas12a. 
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